Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Protein Sci ; 33(4): e4961, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38511674

RESUMO

Misfolding of mutant Cu/Zn-superoxide dismutase (SOD1) has been implicated in familial form of amyotrophic lateral sclerosis (ALS). A natively folded SOD1 forms a tight homodimer, and the dimer dissociation has been proposed to trigger the oligomerization/aggregation of SOD1. Besides increasing demand for probes allowing the detection of monomerized forms of SOD1 in various applications, the development of probes has been limited to conventional antibodies. Here, we have developed Mb(S4) monobody, a small synthetic binding protein based on the fibronectin type III scaffold, that recognizes a monomeric but not dimeric form of SOD1 by performing combinatorial library selections using phage and yeast-surface display methods. Although Mb(S4) was characterized by its excellent selectivity to the monomeric conformation of SOD1, the monomeric SOD1/Mb(S4) complex was not so stable (apparent Kd ~ µM) as to be detected in conventional pull-down experiments. Instead, the complex of Mb(S4) with monomeric but not dimeric SOD1 was successfully trapped by proximity-enabled chemical crosslinking even when reacted in the cell lysates. We thus anticipate that Mb(S4) binding followed by chemical crosslinking would be a useful strategy for in vitro and also ex vivo detection of the monomeric SOD1 proteins.


Assuntos
Esclerose Amiotrófica Lateral , Humanos , Superóxido Dismutase-1/química , Esclerose Amiotrófica Lateral/genética , Dobramento de Proteína , Superóxido Dismutase/química , Saccharomyces cerevisiae/metabolismo , Zinco/metabolismo , Mutação
2.
J Biol Chem ; 299(8): 105040, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37442237

RESUMO

Cu/Zn-superoxide dismutase (CuZnSOD) is an enzyme that binds a copper and zinc ion and also forms an intramolecular disulfide bond. Together with the copper ion as the active site, the disulfide bond is completely conserved among these proteins; indeed, the disulfide bond plays critical roles in maintaining the catalytically competent conformation of CuZnSOD. Here, we found that a CuZnSOD protein in Paenibacillus lautus (PaSOD) has no Cys residue but exhibits a significant level of enzyme activity. The crystal structure of PaSOD revealed hydrophobic and hydrogen-bonding interactions in substitution for the disulfide bond of the other CuZnSOD proteins. Also notably, we determined that PaSOD forms a homodimer through an additional domain with a novel fold at the N terminus. While the advantages of lacking Cys residues and adopting a novel dimer configuration remain obscure, PaSOD does not require a disulfide-introducing/correcting system for maturation and could also avoid misfolding caused by aberrant thiol oxidations under an oxidative environment.


Assuntos
Proteínas de Bactérias , Dissulfetos , Superóxido Dismutase-1 , Cobre , Cisteína , Dissulfetos/química , Superóxido Dismutase-1/química , Zinco , Proteínas de Bactérias/química , Paenibacillus , Dobramento de Proteína
3.
J Trace Elem Med Biol ; 75: 127111, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36435150

RESUMO

BACKGROUND: A copper chaperone CCS is a multi-domain protein that supplies a copper ion to Cu/Zn-superoxide dismutase (SOD1). Among the domains of CCS, the N-terminal domain (CCSdI) belongs to a heavy metal-associated (HMA) domain, in which a Cys-x-x-Cys (CxxC) motif binds a heavy metal ion. It has hence been expected that the HMA domain in CCS has a role in the metal trafficking; however, the CxxC motif in the domain is dispensable for supplying a copper ion to SOD1, leaving an open question on roles of CCSdI in CCS. METHODS: To evaluate protein-protein interactions of CCS through CCSdI, yeast two-hybrid assay, a pull-down assay using recombinant proteins, and the analysis with fluorescence resonance energy transfer were performed. RESULTS: We found that CCS specifically interacted with another copper chaperone HAH1, a HMA domain protein, through CCSdI. The interaction between CCSdI and HAH1 was not involved in the copper supply from CCS to SOD1 but was mediated by a zinc ion ligated with Cys residues of the CxxC motifs in CCSdI and HAH1. CONCLUSION: While physiological significance of the interaction between copper chaperones awaits further investigation, we propose that CCSdI would have a role in the metal-mediated interaction with other proteins including heterologous copper chaperones.


Assuntos
Cobre , Zinco
4.
Free Radic Biol Med ; 183: 60-68, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35314356

RESUMO

Cu/Zn-superoxide dismutase (SOD1) is a homodimer with two identical subunits, each of which binds a copper and zinc ion in the native state. In contrast to such a text book case, SOD1 proteins purified in vitro or even in vivo have been often reported to bind a non-stoichiometric amount of the metal ions. Nonetheless, it is difficult to probe how those metal ions are distributed in the two identical subunits. By utilizing native mass spectrometry, we showed here that addition of a sub-stoichiometric copper/zinc ion to SOD1 led to the formation of a homodimer with a stochastic combination of the subunits binding 0, 1, and even 2 metal ions. We also found that the homodimer was able to bind four copper or four zinc ions, implying the binding of a copper and zinc ion at the canonical zinc and copper site, respectively. Such ambiguity in the metal quota and selectivity could be avoided when an intra-subunit disulfide bond in SOD1 was reduced before addition of the metal ions. Apo-SOD1 in the disulfide-reduced state was monomeric and was found to bind only one zinc ion per monomer. By binding a zinc ion, the disulfide-reduced SOD1 became conformationally compact and acquired the ability to dimerize. Based upon the results in vitro, we describe the pathway in vivo enabling SOD1 to bind copper and zinc ions with high accuracy in their quota and selectivity. A failure of correct metallation in SOD1 will also be discussed in relation to amyotrophic lateral sclerosis.


Assuntos
Esclerose Amiotrófica Lateral , Superóxido Dismutase , Esclerose Amiotrófica Lateral/genética , Cobre/química , Humanos , Espectrometria de Massas , Mutação , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Zinco/metabolismo
5.
Metallomics ; 13(9)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34402915

RESUMO

Bacterial Cu/Zn-superoxide dismutase (SodC) is an enzyme catalyzing the disproportionation of superoxide radicals, to which the binding of copper and zinc ions and the formation of an intramolecular disulfide bond are essential. We previously showed that Escherichia coli SodC (SodC) was prone to spontaneous degradation in vivo in an immature form prior to the introduction of the disulfide bond. The post-translational maintenance involving the metal binding and the disulfide formation would thus control the stability as well as the enzymatic function of SodC; however, a mechanism of the SodC maturation remains obscure. Here, we show that the disulfide-reduced SodC can secure a copper ion as well as a zinc ion through the thiolate groups. Furthermore, the disulfide-reduced SodC was found to bind cuprous and cupric ions more tightly than SodC with the disulfide bond. The thiolate groups ligating the copper ion were then autooxidized to form the intramolecular disulfide bond, leading to the production of enzymatically active SodC. Based upon the experiments in vitro, therefore, we propose a mechanism for the activation of SodC, in which the conserved Cys residues play a dual role: the acquisition of a copper ion for the enzymatic activity and the formation of the disulfide bond for the structural stabilization.


Assuntos
Cisteína/metabolismo , Proteínas de Escherichia coli/metabolismo , Superóxido Dismutase-1/metabolismo , Catálise , Cobre/metabolismo , Dissulfetos/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli/química , Ligação Proteica , Conformação Proteica , Compostos de Sulfidrila/metabolismo , Superóxido Dismutase-1/química , Zinco/metabolismo
6.
Int J Mol Sci ; 15(11): 19971-86, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25372943

RESUMO

Yellow Cameleons are genetically encoded Ca2+ indicators in which cyan and yellow fluorescent proteins and calmodulin work together as a fluorescence (Förster) resonance energy transfer Ca2+-sensor probe. To achieve ultrasensitive Ca2+ imaging for low resting Ca2+ or small Ca2+ transients in various organs, we generated a transgenic mouse line expressing the highest-sensitive genetically encoded Ca2+ indicator (Yellow Cameleon-Nano 15) in the whole body. We then focused on the mechanism of exocytotic events mediated by intracellular Ca2+ signaling in acinar cells of the mice with an agonist and observed them by two-photon excitation microscopy. In the results, two-photon excitation imaging of Yellow Cameleon-Nano 15 successfully visualized intracellular Ca2+ concentration under stimulation with the agonist at nanomolar levels. This is the first demonstration for application of genetically encoded Ca2+ indicators to pancreatic acinar cells. We also simultaneously observed exocytotic events and an intracellular Ca2+ concentration under in vivo condition. Yellow Cameleon-Nano 15 mice are healthy and no significant deteriorative effect was observed on physiological response regarding the pancreatic acinar cells. The dynamic range of 165% was calculated from Rmax and Rmin values under in vivo condition. The mice will be useful for ultrasensitive Ca2+ imaging in vivo.


Assuntos
Células Acinares/metabolismo , Proteínas de Ligação ao Cálcio/genética , Cálcio/metabolismo , Pâncreas/citologia , Acetilcolina/farmacologia , Células Acinares/citologia , Animais , Ionóforos de Cálcio/farmacologia , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Exocitose/efeitos dos fármacos , Transferência Ressonante de Energia de Fluorescência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...